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The linear excitation of straight-crested, capillary-gravity waves on the surface 
(x > 0) of a deep, viscous liquid in response to the sinusoidal, vertical motion of a 
hydrophilic wall at  x = 0 is calculated on the assumptions that: (i) the dynamical 
variation of the contact angle is proportional to (but not necessarily in phase with) 
the velocity of the contact line relative to the wall; (ii) the relative tangential 
velocity (slip) of the fluid below the contact line is proportional to the shear at  the 
wall; (iii) k,I, < 1 and k, l ,  = 0(1) ,  where k, is the wavenumber, I ,  is the boundary- 
layer thickness, and 1, is the capillary length. The contact-angle and slip coefficients 
are complex functions of frequency that are found to be linearly related. Physical 
considerations suggest that the slip length I ,  ( = slip velocity -+ shear at wall) should 
be small compared with I , ,  which, in turn, implies that the motion of the contact line 
must be small in that parametric domain in which linearization provides a viable 
description of the wave motion near the wall; however, the analysis proceeds from 
(i) and (ii), qua phenomenological hypotheses, without a priori restrictions on the 
contact-line and slip coefficients. The present results include those of Wilson & Jones 
(1973), who assume that the amplitude and phase of the wave slope at  the wall are 
prescribed, and those of Hocking (1987a), who assumes that the variation of the 
wave slope at the wall is in phase with the contact-line velocity and neglects 
viscosity. They also include a correction for the dynamical effects of the static 
meniscus, which is necessarily present for any static contact angle other than !gc but 
is neglected in the previous analyses, and have counterparts for the closely related 
problem (cf. Hocking 1987 b)  of the reflection of a plane wave from a stationary wall. 

1. Introduction 
I consider here the excitation of a straight-crested, capillary-gravity wave with 

the asymptotic form 

in a deep, viscous liquid in response to the prescribed, vertical velocity 

7 * aaexp[i(wt-k*x)] (x+co) 

of a hydrophilic wall at  x = 0, where : 7 is the free-surface displacement ; only the real 
parts of variables that include the factor exp (iwt) are to be retained in the physical 
interpretation; a is a prescribed amplitude, which may be chosen to be real and 
positive ; a is a dimensionless complex amplitude, which is to be determined ; w is the 
prescribed frequency ; k, is a complex wavenumber, the real/imaginary part of which 
is positive/negative (see (2.9)). The relevant lengthscales are a, l/k,, I , ,  E, ,  and y,, 
where k, is determined by the dispersion relation 

w2 = gk, + Tki = o i ( k , ) ,  

1, = (T/g)i, 1, E (2v /w) f ,  

(1.3) 
(1.4a, b)  
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pT is the surface tension, v is the kinematic viscosity ( l / k o  = 1 cm, 1, = 0.3 cm, and 
1, = 0.03 cm for a 5 Hz wave on clean water), and y, is the static elevation of the 
contact line (the height of the meniscus) a t  the wall. I assume that k, a is sufficiently 
small to permit linearization of the equations of motion and the boundary conditions 
and that 

(1.5a-c) 

The configuration just described, which is arguably the simplest model of the 
contact-line problem for surface waves, has been considered by Jewell (1967), Smith 
(1968), Wilson & Jones (1973), and Hocking (1987a) for ,u = 0 (flat static surface). 
Jewell incorporates both capillarity and viscosity and constructs the governing 
integral equations without invoking e 4 1, but he does not report any solutions. 
Smith (1968) neglects capillarity, which implies that 1, 4 I ,  and is unrealistic for 
laboratory-scale water waves. Wilson & Jones (1973) allege that Smith’s solution for 
K = 0 is in error and obtain a solution for K = O(1) on the assumption that the 
amplitude and phase of the wave slope 7% are prescribed a t  the wall. 

8 = k0l” 4 1, K = k , l ,  = O(l) ,  p = k,ly,( % 1. 

Hocking (1987 a)  neglects viscosity and posits the contact-line condition 

c1;z = 7 t - ” o  (x = 01, (1.6) 
where c is a parameter with the dimensions of velocity. He assumes that c is real and 
interprets it as the inverse local slope of contact angle ws. velocity in the absence of 
hysteresis, but this interpretation is, in my view, directly significant only for uniform 
motion (cf. Ablett 1923 and Ngan & Dussan V. 1989). I regard (1.6) as the simplest, 
non-trivial, linear hypothesis for the determination of unsteady contact-line motion 
and regard c as a phenomenological parameter that can be determined by laboratory 
measurement and that must be a complex function of w for harmonic motion, for 
which 7, and the relative velocity yt  - wo cannot be assumed to be in phase ; however, 
I know of no measurements of c (as deJined by (1.6)) in the parametric domain of 
laboratory surface waves. It should be remarked that (1.6) excludes capillary 
hysteresis, which is intrinsically nonlinear and which Hocking considers separately. 
(Young & Davis 1987 also analyse an oscillating plate with capillary hysteresis but 
neglect inertial forces and do not calculate the radiated wave.) 

The contact-line condition (1.6) reduces to 1;, = 0 in the limit k, c/w+cc and then 
is compatible with the boundary condition w, + 0 as x + 0 (v is the vertical velocity) 
in an irrotational flow, but if c + 0 (1.6) implies a non-uniform behaviour near the 
contact line. This non-uniformity may be partially resolved if viscosity is admitted 
and the conventional no-slip hypothesis for v replaced by the slip Condition? (which 
I also regard as a phenomenological hypothesis) 

where I ,  is a slip length that, like c,  must be expected to be a complex function of w .  
On first considering (1.7), I had thought that it would be compatible with (1.6) only 

if l,+c/iw as y t  y,; in fact, allowance needs to be made for the possible non- 
uniformity of v, in the neighbourhood of x = 0, y = y,. Let 

v-wo = z,v, (x’ = 0, y < y,), (1.7) 

g = uy-v, (1.8) 
be the vorticity (u is x-component of the velocity), which presumably is single- 
valued. The requirement that the shear stress pv(u, + v,) vanish a t  the free surface 

t The joint assumptions of contact-line motion and no slip imply a singularity in the shear 
stress ; see Ngan & Dussan V. (1989), who also discuss alternative models for the elimination of this 
singularity . 
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where y = y,(x) is the static meniscus; this contrasts with the condition inferred 
from u = uy = 0 a t  the wall, 

C+v, = 0 (z = 0, y <ye). (1.9b) 

It follows that either [ = v, = 0 a t  x = 0, y = ye (as in an irrotational flow) or that 
v, is non-uniform as that point is appr0ached.t In the latter case we have iw(v-vo) 
= iocy, = cv, = -+cc from (1.6) and (1.9a), and v-vo = -1J from (1 .7)  and (1.9b), 
in consequence of which (1.6) and (1.7) are compatible for c, ls =i= 0 if and only if 
1, + +(io)-lc as y t yc or, equivalently, 

c = 2io10, 1, = &(ye). (1.10a, b)  

Appropriate, dimensionless measures of c and 1, are 

( l . l l a ,  b)  

which may be combined with (1.5) and (1.10) to obtain 

y = 2isK-1 A. (1.12) 

Physical consideration of the slip condition (1.7) suggests that IAl 4 1 and hence, 
through (1.12), that 171 4 1.1 This implies that contact-line motion is negligible, as 
proposed and experimentally confirmed (for vo = 0) by Benjamin & Scott (1979) for 
surface waves in a rim-full container or as observed for the reflection of surface waves 
of sufficiently small amplitude and sufficiently high frequency from a gently sloping 
beach (see Mahony & Pritchard 1980 and Miles 1990). This may be true throughout 
that parametric domain in which (1.6) and (1.7) are useful approximations, in which 
case they reduce to y, = vo and w = vo, but it seems worthwhile, both conceptually 
and for comparison with experiment, to obtain an analytical solution that comprises 
both capillarity and viscosity and explicitly displays the dependence of the response 
on the parameters K ,  y and A ,  without apriori restrictions on their magnitudes, in the 
limit s+O (the boundary-layer approximation) and then to examine the joint limit 

I proceed as follows. In  $2, I pose the boundary-value problem for ,u = 0 and, 
following Lamb (1932), give the asymptotic solutions for Ic, x+m, in which limit (1.1) 
is realized, and for Ic, y 4 - 00, in which limit the solution is essentially that of Stokes 
for an oscillating plate. In $3, I recapitulate Hocking’s ( 1 9 8 7 ~ )  solution of the 
inviscid problem for infinite depth (Hocking considers arbitrary depth). Neither $2 
nor $3  contains new results, but they provide a necessary foundation for the 
subsequent determination of the joint effects of capillarity and viscosity. 

In  $4, I formulate the inviscid problem with allowance for a non-flat static surface 
and construct an approximation that is quantitatively valid for J,ul 4 1 and appears 

t Note that v, must be expected to be non-uniform near the intersection of a free surface and 
a rigid boundary in an irrotational flow (e.g. (3.8) implies w,cc tan-’ (x/-y) as x, y+O), and 
therefore also in a boundary-layer approximation obtained by perturbing an irrotational flow, 
but that (1.9a, b )  are inferred directly from the viscous boundary conditions without further 
approximation. 

t; This contrasts strongly with the result inferred from the analysis of Ngan 6 Dussan V. (1989) 
for the uniform advance of a viscous liquid with velocity U through a narrow gap of breadth b in 
the joint limit vU/T, U b / v ,  b/ l ,+O.  Their result for l / c  = -dO/dU a t  U = 0 implies y = O(T/vwl,) 
= O(K/e2) ,  which implies Iy( $ 1 in the surface-wave regime. However, their assumptions manifestly 
differ from those on which (1.12) is based ; in particular, U b / v  + 0 implies the neglect of inertial 
forces in their derivation, whereas the equality iwy, = v,, which is crucial in the derivation of 
(l.lOu), is otiose for uniform motion. 

K ,  7 ,  h+O. 
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to be qualitatively valid for p = O(1). I have not attempted to calculate the 
interaction of the meniscus with the viscous boundary layers (see below), but this 
interaction is a t  most O(ep) and negligible in the present context. 

I n  $5, I postulate viscous boundary layers of strength O(e) a t  the wall and O(e2) a t  
the free surface and calculate the complex amplitudes of the wave slope a t  the wall 
and the outgoing wave through O(e). I simplify the calculation in $5 by assuming 
that 1, is constant, which is somewhat unrealistic (since 1, must be expected to vanish 
for IyI 9 1,) but suffices for order-of-magnitude estimates. If only the lowest-order 
terms in the ordered limit e, K ,  p, y ,  h + 0 are retained the result for a, as defined by 
( l . l ) ,  reduces to 

a = -2k[1+0.38p +iy + O(y2,  p2, K In K ) ]  +e[ l+  i-2ih + O(s, A’, Kln K ) ] ,  (1.13) 

in which - 2 i ~ (  1 + 0.38p), 2 ~ y  = 2k0 c / w ,  (1 + i)e and 2ieh = 2ik0 1, represent the 
respective effects of capillarity with a fixed contact line, contact-line motion, 
boundary-layer viscosity without slip, and viscous slip. The second and fourth of 
these may be combined through (1.12) to  obtain 2~y-2ieh = ~y (but note that, 
owing to the assumption that I, is constant, 2ieh presumably overestimates the effect, 
of viscous slip) ; more importantly, each of 2 ~ y  and 2ieh is small compared with the 
O(e) contribution of boundary-layer viscosity. 

The viscous correction factor to  Hocking’s ( 1987 a)  inviscid result for 7 is found (in 
$5)  to be 1 + O ( E ) ,  uniformly with respect to x, by virtue of which the lengthscale for 
7 in the neighbourhood of the wall is I ,  (rather than 1”). The inviscid result., (3.8) 
below, may be expressed in terms of exponential integrals, but it suffices for 
illustrative purposes to consider the limit K + O  with x = O(lc) ,  which yields 

7 = (l-iy)-’uexp[iwt-(x/2,)][1+O(e, p, KlnK)]. (1.14) 

It is worth noting that (1.14) also may be obtained by solving the linearized 
hydrostatic equation (in which the hydrodynamic pressure and the normal 
component of the viscous stress are neglected) 

TY,, = 9$ (1.15) 

subject to the contact-line condition (1.6) and a finiteness condition for x 9 1,. 
Surfactant contamination (which may be either accidental or intentional) is 

present in most laboratory configurations for which capillary phenomena arc 
significant and may render the free surface approximately inextensible, in 
consequence of which the condition of vanishing shear stress is replaced by the 
condition of vanishing tangential velocity. The boundary layers at the surface and 
the wall then are both O ( E )  but interact only at O(e2). I carry out the corresponding 
boundary-layer calculation in the Appendix. The dominant effect of the surface 
boundary layer is to render k , - k ,  = O(e), rather than O(2)  as in $42 and 5 .  

Surface-wave excitation by an oscillating wall is closely related to surface-wave 
reflection from a stationary wall, which also has been considered by Hocking (1987 b ) ,  
and the present results -in particular (1.10) and the conclusion that the lengthscale 
for 7 near the wall is 1, - have direct counterparts for the reflection problem and also 
for standing waves in closed basins. 

Finally, it should be emphasized that the present analysis is expected to be valid 
only for hydrophilic fluid-solid combinations - e.g. Photo-Flo (a wetting agent)- 
treated water on clean glass or n-butyl alcohol on clean Plexiglas. Capillary 
hysteresis and experimental irreproducibility appear to be ineluctable concomitants 
of hydrophobic combinations. 
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2. Boundary-value problem 
The linearized boundary-value problem for ,u = 0 (flat static surface) is described by 

(cf. Lamb 1932, $349, after changing his signs of $ and $ and separating the 
hydrodynamic and hydrostatic pressures) 

u = 9,+4,, v = $y-$x3 P = - P A ,  
V2$ = 0, uV2$ = $t ,  

u = 0, v-z,v, = vo (x = 0, y < O ) ,  

(2.la-c) 

(2.2a, b )  

(2.3a, b)  

P 
P 

v = T t ,  Ty,,-gT = --+2uv,, v(u,+v,) = 0 (x > 0, y = 0), (2.4a-c) 

d+O, $ Y + O  (Y.1--), (2.5a, b) 

the contact-line condition (1.6) a t  x = 0, and the radiation condition (1.1) for x+m ; 
u and v are the x- and y-components of the velocity, and p is the hydrodynamic 
pressure. 

The solution for k,x b 1, for which the conditions (1.6) and (2.3) a t  x = 0 may be 
relaxed, is given by (Lamb 1932, after letting n = iw and reversing the sign of kx in 
his solution) 

(2.6a, b)  [$, $1 = (iw/k)[( 1 --is2) eky, e2 ernY]q, 7 = aaei(wt-kz), 

where 

and k is determined by the complex dispersion relation 

( w - 2 2 i ~ k ~ ) ~ + 4 u ~ k ~ m  = gk+Tk3 = wi(k). 

2.7a-c) 

Expanding (2.8) about k = k,, where k = k, is determined by w:(k,) = w2 (1.3), we 
obtain 

is% 
k = k,--+O(e3) k,, cg = wA(k), 

C&,) 

where cg is the group velocity. 
The solution for k,lyl 9 1, for which (2.4) may be relaxed, is given by 

(2.9a, b)  

(2.10a, b)  

on the assumption that 1, is constant. 

3. Hocking’s inviscid solution 

conditions 
The inviscid (v = 0) solution satisfies Laplace’s equation (2.2a), the boundary 

9, = 0, 7t-CTz = vo (z = O ) ,  (3 . la ,  b)  

$y = 7t,  $t = Trlxz-qsT (Y = 01, (3.2a, b)  

the null condition (2.5a), and the radiation condition (1.1). 
Introducing the Fourier-cosine transforms 

(@, N )  = ($, 7) cos kzdx, ($, 7) = (0, N )  cos kxdk, (3.3a, b)  
0 



640 J .  Miles 

transforming (2 .2~)  and (3.2a, b ) ,  and invoking ( 3 . 1 ~ )  in the transform of q5zz, we 
obtain 

Q , g y - k ~ Q ,  = 0, (3.4) 

f7 = 7 2  lz=o, (3.6) 

aV = iwN, iwQ, + (g + Tk2) N = - Ta (y = 0), (3.5u, b )  
where 

the wave slope a t  the wall, is to be determined. The solution of (3.4), (3.5u, b )  and the 
null condition a t  y = - 03 ( 2 . 5 ~ )  is given by 

Tka 
w2 - w i ( k )  ’ 

Q, = iwk-l Ne“”, N = 

where wi(k )  = g k + T k 3 ,  as in (1.3). Substituting (3.7) into (3.3b), we obtain 

(3.7a, b)  

where the path of integration passes over the pole at k = ko(w = w o )  in order to satisfy 
(1.1). (Alternatively, k may be confined to the real axis and the Fourier integrals 
interpreted as Cauchy principal values, in which case a multiple of the delta function 
6(k-Ico) must be added to  the right-hand side of (3.7b); cf. Hocking 1987a, b.) 

We determine r by substituting 7, yz and wo from (3.8), (3.6) and (1.2) into (3.16). 
The end result, after letting k = k o c ,  and invoking (1.3), (1.4u), (1.5b) and ( l . l l u ) ,  is 

(iwZC)-l vo - (u/E,) eiWt - v =  
I + i y  I + i y  ’ (3.9) 

where 

Finally, we let x f 0 3  in (3.8), in which limit the path of integration for the exp 
(kikx)  component of cos kx may be deformed into (0, kico) in the complex-k plane 
and 7 is dominated by the contribution of the pole a t  k = ko(5 = 1) to the exp (-ikx) 
component. The invocation of (3.10) and (1.1) then yields (Hocking’s 1987u result 
after restoring a missing factor of 1 + K and letting KD +co in his (4.12)) 

2iK 
(1 + ~ K ~ ) [ I ( K )  + iy] ’ 

a =  

4. Inviscid solution with meniscus 
The static free surface, y = y,(x), is governed by the capillary equation 

1; y” 
y=-= gR, (1 + yr2)g ’ 

T 

(3.11) 

where R, is the static radius of curvature and y’ = dy/dx. The solution of (4.1), 
subject to the null condition y+O for x+co, is given by (a special case of Euler’s 
elastica) 



Capillaryuiscous forcing of surface waves 64 1 

where x = tan-'(dy/dx) varies monotonically from 0 a t  x = co to xc a t  x = 0 and 8, 
is the static contact angle. Expanding (4.2) in powers of sinix, we obtain 

(4.3a, b) 

which provides an adequate approximation for the present investigation. We remark 
that xc >< 0, and hence that y, 2 0, for a hydrophilic/hydrophobic surface (8, 5 in). 

The presence of the meniscus alters Hocking's model (for which ym = 0) in three 
distinct ways : (i) the linearized free-surface conditions (3.2a, 6 )  for y = y- ym must 
be satisfied on y = ym rather than y = 0 ;  (ii) the kinematical free-surface condition 
( 3 . 2 ~ )  must include a vertical velocity induced by the slope of the meniscus; (iii) the 
vertical component of the dynamical capillary force, which appears as Ty,, in (3.2b), 
is 

ym = y, e-,/'c [I + O(sin2$xXc)], y, = - 21, sin$xc = pk;', 

(4.4a, b) 

where R, is the dynamical radius of curvature. In brief, (3.2a, b) are replaced by 

d ,  = %+Y:,dZ, dt = T(Pllx)z-999 (Y = Y m L  (4.5a, b) 

where the right-hand side of (4.5a) is the linear approximation to Dy/Dt and that of 
(4.5b) follows from (4.4) ( p  is defined by (4.4b) throughout this section). 

We satisfy Laplace's equation ( 2 . 2 ~ )  and the kinematic condition ( 3 . 1 ~ )  by posing 

where 

( 4 . 6 ~ )  

(4.6b) 

and @(k) now (in contrast to $3) is the Fourier-cosine transform of $(x, 0). 
Multiplying (4.5a, 6)  through by cos kx, integrating over 0 < x < 00,  introducing 

(4.7a, b) 

in order to separate out those terms that are directly transformable, and simplifying 
through integration by parts, we obtain (cf. (3.5a, b ) )  

m(x, k) = k-l [exp (kym)- 13, q(x) = 1 -p(x) 

m(x, f )  sin kx sin f x  dx 

1 and (g+Tk2)N+iw@ = T q(x)sinkxsinfxdx 

- lorn @( f ) f df J: m(x, f ) cos kx cos f x  dx, 

where u, as defined by (3.6), is to be determined, and p, = p ( 0 )  = cos3x,. 

from the first approximation (cf. (3.7)) 
The simultaneous integral equations (4.8a, b) may be solved by iteration, 

(4.8~) 

(4.8b) 

starting 

(4.9) 

where wt(k )  is defined by (1.3). The construction of the second approximation 
through the substitution of (4.9) into the right-hand sides of (4.8a, b)  is 
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straightforward, but the results are cumbersome, and it suffices for our purpose to 
assume Ip\ 6 1, adopt (4.3) and the approximation 

m(x, k) = yc e-”/’C[l+ O(,U)],  (4.10) 

and neglect po-  1 and q = O(yi/Zi). The resulting second approximation is 

(4.11b) 

To determine the corresponding approximations to t~ and a, we require 
C )  r m  

(4.12) 

where I is given by (3.10), ,U = k,y, is given by (4.3b), 
(4.13) 

(4.14a, b )  

Substituting (4.12), together with 7% z CT and vo from (1.2), into (1.6) and comparing 
(4.13) with ( l . l ) ,  we obtain 

(4.15) 
(u/(,) eiWt 

I + i y - f l  
c T =  

and (4.16) 

It follows from a comparison of (4.15) and(4.16) with (3.9) and (3.11), respectively, 
that the effects of the meniscus are uniformly O(,uP,pM/I). The most important 
domain is K 6 1, in which 

K 

x 
I = - 1 + - (2 In K + 1) + 2 i ~  + O ( K ~ ) ,  P = - + + O(K) ,  M = 0.222 + O(K).  

(4.17 a-c) 

5. Boundary-layer approximation 
We now return to (2.1)-(2.5), in which viscosity is admitted but the dynamical 

effects of the meniscus are neglected and the boundary conditions are projected onto 
y = 0. The solution may be expanded in powers of 8 according to 

and ( 5 . 1 ~ )  
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where wo and the first (n  = 0) approximations to $ and 7 are given by (1.2) and (3.8). 
The stream function $ depends on both the fast variables x/l ,  and y/l, and the slow 
variables k , x  and k, y. The substitution of (5.1) into (2.1)-(2.5) yields a sequence of 
subproblems for the determination of q3,, rn and $,, with CT and a to be determined 
by the ultimate invocation of (1.1) and (1.6) (or step-by-step through the parallel 
expansions of CT and a in e). 

We consider further the truncation N = 1 - i.e. the first approximation to $ and 
the second approximation to $, for which the contribution 2 v v y  to the normal stress 
and the contribution 2v$,, to the shear stress v(zcy+w,) are negligible and (2.1)-(2.5) 
may be reduced to  (there is no significant advantage in the separation of the n = 0 
and n = 1 components or in the introduction of dimensionless variables at this level 
of approximation) 

' I+i '  
A x + $ , ,  = 0, $XX+$YY = q2$ (4 = T)? (5.2a, b)  

$x=-$y ,  - ~ i - z ~ a x ~ ~ x = ~ o - ~ i - z ~ ~ z ~ ~ y  ( z = o ,  W O ) ,  (5.3a, b) 

q5, = iw7+$z, iw$ = Ty,,-gV, @,,-$zz = 0 (x > 0, y = 0), (5.4a-c) 

$ + O >  @ y + O  (YJ.-W), (5.5a, b)  

where, here and subsequently, O ( 2 )  error terms are implicit. 
The first approximation to @ is determined in terms of the first approximation to 

$ (3.8) by (5.2b), (5.3b), (5 .4~)  and (5.5b) ; however, it proves more efficient to proceed 
to the second approximation to $ before determining + explicitly. Fourier- 
transforming ( 5 . 2 ~ )  and (5.4a, b) ,  as in $3, and invoking ( 5 . 3 ~ )  in the transform of 
#xz,  we obtain (cf. (3.4) and (3.5)) 

@,,-k2@ = -$y(o,Y), (5.6) 
aY = iwN+K:, iw@+(g+Tk2)N= -Tu (y = 0), (5.7a, b) 

where V, = /: $Jz, 0) cos kxdz, 

and cr, the wave slope at the wall, is defined by (3.6). 
The solution of (5.6), ( 5 . 7 ~ )  and the null condition a t  y = - 03 is given by 

@ = (iwN+ v,) k-1 ekY +!&-I [e-kIY-QI + ek(Y+Q) 1 +Q(O, a d?L (5.9) L 
which may be combined with (5.8) to obtain 

[w2 - w;(k) ]  N = Tuk + iw [ 1; $,(z, 0) cos kz dz + lm $y(O, y) eky d y ] (5 .10~)  

= Tvk+iok [ /om $(z, 0) sin kzdz- @(O, y) ekydy] (5.10b) 

((5.10b) follows from (5 .10~)  through integration by parts). 

boundary layer, by remarking that 
We evaluate the first integral in (5. lob), which represents the free-surface 

JOm $zz(z, 0) sin kz dz = k$(O, 0) - $(z, 0) sin kz dz (5.11) 
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through integration by parts and that (5.2b) and ( 5 . 4 ~ )  imply $xx(x, 0) = $q2$(x, 0). 
It follows that 

k$(O,O) $(x, 0) sin kxdx = ____ 
k2+$q2 ' 

(5.12) 

which is 0 ( e 2 ) ,  and therefore negligible, relative to the second integral in (5.106). 
To evaluate the second integral in (5.10b), which represents the boundary layer a t  

the wall, we remark that $(O, y), as determined by the solution of (5.2b), (5.3b) with 
4, approximated through (3.8) therein, ( 5 . 4 ~ )  and (5.5b), comprises a surface 
component that depends on both of the fast variables x / l y  and yll ,  but is 
exponentially small in (yJ 9 I, and a wall component that  depends on xll, and k, y and 
is independent of the surface condition ( 5 . 4 ~ ) .  The contribution to the integral of the 
former component is negligible within the present approximation. It follows that an 
adequate approximation to $ is given by the solution of (5 .2b) ,  (5.3b) with $y 
approximated through (3.8) therein, and (5.56) : 

Substituting (5.13) into the second integral and neglecting the first integral in (5.106) 
we obtain 

To complete the second approximation, we require 

0 r m  
~ ( 0 )  = :) N(k)dk = uZ,(l-E*K)+E*(iw)-'w,J 

0 

and (the asymptotic evaluation follows the penultimate sentence in 9 3) 

where 
8 

E* = 
1 +i  + 2iA ' 

(5.15) 

(5.16) 

(5.17) 

D and I are given by (3.10), the paths of integration are indented over the poles, and 
E ,  K and A are defined by (1.5u, b )  and ( 1 . l l b ) .  Substituting (5.15), together with 
7% = a and wo from (1.2), into (1.6), we obtain (cf. (3.9)) 

(5.19) 

Finally, we substitute (5.17) and (5.19) into (5.16), compare the result with (1 .1)  to 
determine a,  and expand in powers of e to obtain 

a = a, + €al + 0 ( € 2 ) ,  (5.20) 
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where a. is given by (3.11) or, after incorporating the meniscus correction, (4.16), and 

(5.21~~) 

where (5.21b) follows from (5.21a) through (4.17a) for I and the corresponding 
approximations to J ,  K and L. We infer from (4.16) and (5.21b) that capillary and 
viscous effects are independent if and only if ~ l n ~  is negligible. If only the terms of 
lowest order in the limit 8 ,  K, p, y ,  h + 0 are retained in (4.16) and (5.21), (5.20) reduces 
to (1.13). 
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Mathematics and Fluid Dynamics/Hydraulics programs of the National Science 
Foundation, NSF Grant OCE-85-18763, by the Office of Naval Research, Contract 
N00014-84-K-0137,4322318 (430), and by the DARPA Univ. Res. Init. under Appl. 
and Comp. Math. Program Contract N00014-86-K-0758 administered by the Office 
of Naval Research. 

Appendix. Inextensible surface 
If the surface is inextensible the boundary condition (2 .4~)  is replaced by 

u = $hz + 9, = 0 (x B 0, y = O ) ,  (A 1) 

which, by virtue of (2.3a), holds for x = 0 as well as for x > 0. Substituting the 
approximation (3.8) for $h into (A l), we obtain 

(A 2) 
2ioTu k sin kx dk ', = TJo 02-oi (k)  [1+ O(s) ]  = ul(x) (x B 0, y = 0). 

The boundary-layer approximation to the solution of (2.2b) and(A 2) is given by (cf. 
(5.13)) 

9 s  = ~-'U,(x) eqy (Ivl % J"). (A 3) 

Superimposing the boundary-layer solutions (5.13) and (A 3) and proceeding as in 
$4, we find that (5.6) and (5.7b) are unchanged, while (5.7a) is replaced by 

@, = ioN(l+:)+ V, 

where V, is given by (5.8). This leads to 

[w2(1 +k/q)-oi(k)]N(k) = r.h.s. (5.14) +0(2) 

D(5) = (1 -5)[1+ K2( 1 + g+ 571 +$( 1 -i)e( 1 + K 2 )  5 

(A 5) 

(A 6) 

in place of (5.14). This, in turn, implies the replacement of D(5) in I ,  J ,  K and L by 

and of k ,  in (1.1) by 

k, =k,[l+$(l-i  ) E ( 3 1 .  
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The condition ( 1 . 9 ~ )  does not hold for a strictly inextensible surface, but the 
tangential condition for unsaturated contamination may be posed in the form 
u = - Zs(u, +vX), where I s  varies from 00 for a clean surface to 0 for a saturated surface 
(cf. Miles 1967); accordingly, since u must vanish at x = 0, so also must ug+wx, and 
( 1 . 9 ~ )  holds for any finite value of 1,. 
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